Classification Rule Discovery with Ant Colony Optimization with Improved Quick Reduct Algorithm
نویسندگان
چکیده
Ant colony optimization (ACO) algorithms have been applied successfully to combinatorial optimization problems. More recently, Parpinelli et al have applied ACO to data mining classification problems, where they introduced a classification algorithm called Ant Miner. In this paper, we present a system that combines both the proposed Improved Quickreduct algorithm for data preprocessing and ant miner. The proposed system was tested on standard data set and its performance is better than the original Ant Miner algorithm.
منابع مشابه
FUZZY GRAVITATIONAL SEARCH ALGORITHM AN APPROACH FOR DATA MINING
The concept of intelligently controlling the search process of gravitational search algorithm (GSA) is introduced to develop a novel data mining technique. The proposed method is called fuzzy GSA miner (FGSA-miner). At first a fuzzy controller is designed for adaptively controlling the gravitational coefficient and the number of effective objects, as two important parameters which play major ro...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملComparative Analysis and Survey of Ant Colony Optimization based Rule Miners
In this research study, we analyze the performance of bio inspired classification approaches by selecting Ant-Miners (Ant-Miner, cAnt_Miner, cAnt_Miner2 and cAnt_MinerPB) for the discovery of classification rules in terms of accuracy, terms per rule, number of rules, running time and model size discovered by the corresponding rule mining algorithm. Classification rule discovery is still a chall...
متن کاملA Study on Ant Colony Optimization with Association Rule
Ant miner is a data mining algorithm based on Ant Colony Optimization (ACO). Ant miner algorithms are mainly for discovery rule for optimization. Ant miner + algorithm uses MAX-MIN ant system for discover rules in the database. Soil classification deals with the systematic categorization of soils based on distinguished characteristics as well as criteria. The proposed model delivers to Ant mine...
متن کاملA Novel Rough Set Reduct Algorithm for Medical Domain Based on Bee Colony Optimization
Feature selection refers to the problem of selecting relevant features which produce the most predictive outcome. In particular, feature selection task is involved in datasets containing huge number of features. Rough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. This paper proposes a new featur...
متن کامل